Key Vocabulary

experimental probability, p. 475 theoretical probability, p. 476 simulation, p. 478

Key Idea

Experimental Probability

Probability that is based on repeated trials of an experiment is called experimental probability.

$$P(\text{event}) = \frac{\text{number of times the event occurs}}{\text{total number of trials}}$$

Probability Finding an Experimental Probability **Example 1**

Heads	Tails		
6	19		

The table shows the results of spinning a penny 25 times. What is the experimental probability of spinning heads?

Heads was spun 6 times in a total of 6 + 19 = 25 spins.

Experimental probabilities are found the same way as relative frequencies.

00,464

 $P(\text{event}) = \frac{\text{number of times the event occurs}}{\text{total number of trials}}$

$$P(\text{heads}) = \frac{6}{25}$$
 Heads was spun 6 times.

There was a total of 25 spins.

The experimental probability is $\frac{6}{25}$, 0.24, or 24%.

denominator

The table shows the results of rolling a number cube 50 times. Find the experimental probability of the event.

Number Rolled	1	2	3	4	5	6
Frequency	10	4	8	11	11	6

how many -> Frequency

1. rolling a 3

2. rolling an odd number

Big Ideas Learning, LLC

Key Idea

Theoretical Probability

When all possible outcomes are equally likely, the theoretical probability of an event is the quotient of the number of favorable outcomes and the number of possible outcomes.

$$P(\text{event}) = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}$$

Finding a Theoretical Probability Example 2

You randomly choose one of the letters shown. What is the theoretical probability of choosing a vowel? A 2 10 V

The probability of choosing a vowel is $\frac{3}{7}$, or about 43%.

Try It

3. What is the theoretical probability of randomly choosing an X?

$$\frac{1}{7} = 0.1428$$

about 14%

Example 3 Comparing Probabilities

The bar graph shows the results of rolling a number cube 50 times. How does the experimental probability of rolling an odd number compare with the theoretical probability?

Step 1: Find the experimental probability of rolling an odd number.

The bar graph shows 11 ones, 7 threes, and 9 fives. So, an odd number was rolled 11 + 7 + 9 = 27 times in a total of 50 rolls.

$$P(\text{odd}) = \frac{\text{number of times an odd number was rolled}}{\text{total number of rolls}}$$
$$= \frac{27}{50}, \text{ or } 54\%$$

Step 2: Find the theoretical probability of rolling an odd number.

$$P(\text{odd}) = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}} = \frac{3}{6} = \frac{1}{2}$$
, or 50%

experimental 11+7+9=27=54%

theoretical How many odd #s or a die?

The experimental probability of rolling an odd number is 54%, which is close to the theoretical probability of 50%.

Try It

4. In Example 3, how does the experimental probability of rolling a number greater than 1 compare with the theoretical probability?

experimental- How many times we rolled greater than I

theoretical-How many numbers are greater than I on a dice

$$2,3,4,5,6$$
 $\frac{5}{6} = (about)$

They are close to each Other. Experimental and Theoretical Probability