

Extra Practice

Write the word sentence as an inequality.

- 1. A number x is at most 3.
- 2. A number y added to 2 is greater than 7. 4+2>7
- 3. A number c multiplied by 3 is less than -12. 30 < 4 12
- 4. A number m minus 1.5 is no less than 2. $-1.5 \ge 2$
- 5. Your friend writes the word sentence as an inequality. Is your friend correct? Explain your reasoning.

Three times a number z is more than 18. 3z < 18

no more than is >18

Tell whether the given value is a solution of the inequality.

- 6. $t-3 \ge 2$; $t=10 \mid 0-3 \ge 2$ 7. 6w < -2; $w=1 \mid 6(1) \mid 2-2 \mid 62-2 \mid 00$
- Graph the inequality on a number line.
- 9. $\frac{1}{2}d > -3$; d = 0 $\frac{1}{2}(0) > -3$ 0 > -3 yes
- 10. k>1
- **11.** *n* ≤ −2.5
- 12. In order to try out for one of the parts in a play at the local theater, you must be at most 12 years old. Write an inequality that represents this situation.

 y = 12

 Tell whether the given value is a solution of the inequality.

- 13. 3h-7 < h; h=2 3(2)-7 < 2 14. $q+8 \ge \frac{q}{4}; q=-12$ $-12+8 \ge \frac{-12}{4}$ 15. Consider the inequalities -2x < 10 and -6 < -2x.

- **a.** Is x = 0 a solution of both inequalities? $-2(0) \angle 10$ -62 2(0) $\angle 10$ -620. **b.** Is x = 4 a solution of both inequalities? -6c-2(4) -6c-8
- -2(4)<10 -8410 c. Find another value of x that is a solution of both inequalities.
- 16. The maximum area that is available for a rectangular garden is 80 square feet.
 - a. Write an inequality that represents the possible dimensions for the garden.
 - b. Find three different sets of allowable dimensions for the garden. Find the area of each garden.

V6-5

3 < X